ConcurrentHashMap结构
在JDK7中ConcurrentHashMap是基于细粒度分离锁实现的,其结果大致如下:
在JDK7中ConcurrentHashMap由多个Segment组成,每个Segment都继承了ReentrantLock,是一把重入锁。
JDK8 中完全重写了ConcurrentHashmap,ConcurrentHashmap实现上和原来的分段式存储有很大的区别,本文讲解的JDK8中ConcurrentHashMap与JDK8的HashMap有相通之处,底层依然由“数组”+链表+红黑树实现,利用全新的CAS算法保证线程安全。Segment虽保留,但已经简化属性,仅仅是为了兼容旧版本。
CAS算法:unsafe.compareAndSwapInt(this, valueOffset, expect, update); CAS(Compare And Swap),意思是如果valueOffset位置包含的值与expect值相同,则更新valueOffset位置的值为update,并返回true,否则不更新,返回false。
CAS作为知名无锁算法,那ConcurrentHashMap就没用锁了么?当然不是,hash值相同的链表的头结点还是会synchronized上锁。
重要属性
我们重点关注几个出镜率比较高的属性
private transient volatile int sizeCtl;
sizeCtl是控制标识符,volatile关键字保证了其线程可见性,不同的值表示不同的意义。
负数代表正在进行初始化或扩容操作
-1代表正在初始化
-N 表示有N-1个线程正在进行扩容操作
正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小,类似于扩容阈值。它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor是对应的。实际容量>=sizeCtl,则扩容。
transient volatile Node<K,V>[] table;
盛装Node元素的数组,在第一次插入时被初始化(延迟初始化,并没有在构造函数执行时进行初始化),它的大小总是2的整数次幂 。
//链表转树阈值,大于8时
static final int TREEIFY_THRESHOLD = 8;
//树转链表阈值,小于等于6时(仅在扩容transfer时才可能树转链表)
static final int UNTREEIFY_THRESHOLD = 6;
重要内部类
Node是最核心的内部类,它包装了key-value键值对,所有插入ConcurrentHashMap的数据都包装在这里面。
相关注意的点在源码中用注释说明:
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; volatile V val; volatile Node<K,V> next; Node(int hash, K key, V val, Node<K,V> next) { this.hash = hash; this.key = key; this.val = val; this.next = next; } public final K getKey() { return key; } public final V getValue() { return val; } public final int hashCode() { return key.hashCode() ^ val.hashCode(); } public final String toString(){ return key + "=" + val; } public final V setValue(V value) { throw new UnsupportedOperationException(); } public final boolean equals(Object o) { Object k, v, u; Map.Entry<?,?> e; return ((o instanceof Map.Entry) && (k = (e = (Map.Entry<?,?>)o).getKey()) != null && (v = e.getValue()) != null && (k == key || k.equals(key)) && (v == (u = val) || v.equals(u))); } /** * Virtualized support for map.get(); overridden in subclasses. */ Node<K,V> find(int h, Object k) { Node<K,V> e = this; if (k != null) { do { K ek; if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; } while ((e = e.next) != null); } return null; } }
TreeNode是另外一个核心的数据结构。当链表长度过长的时候,会转换为TreeNode。但是与HashMap不相同的是,它并不是直接转换为红黑树,而是把这些结点包装成TreeNode放在TreeBin对象中,由TreeBin完成对红黑树的包装。
static final class TreeNode<K,V> extends Node<K,V> { TreeNode<K,V> parent; // red-black tree links TreeNode<K,V> left; TreeNode<K,V> right; TreeNode<K,V> prev; // needed to unlink next upon deletion boolean red; TreeNode(int hash, K key, V val, Node<K,V> next, TreeNode<K,V> parent) { super(hash, key, val, next); this.parent = parent; } Node<K,V> find(int h, Object k) { return findTreeNode(h, k, null); } /** * Returns the TreeNode (or null if not found) for the given key * starting at given root. */ final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) { if (k != null) { TreeNode<K,V> p = this; do { int ph, dir; K pk; TreeNode<K,V> q; TreeNode<K,V> pl = p.left, pr = p.right; if ((ph = p.hash) > h) p = pl; else if (ph < h) p = pr; else if ((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if (pl == null) p = pr; else if (pr == null) p = pl; else if ((kc != null || (kc = comparableClassFor(k)) != null) && (dir = compareComparables(kc, k, pk)) != 0) p = (dir < 0) ? pl : pr; else if ((q = pr.findTreeNode(h, k, kc)) != null) return q; else p = pl; } while (p != null); } return null; } }
TreeNode继承自ConcurrentHashMap的Node类而并非HashMap中的继承自LinkedHashMap.Entry类,也就是说TreeNode带有next指针,这样做的目的是方便基于TreeBin的访问。
TreeBin并不负责包装用户的key、value信息,而是包装的很多TreeNode节点。它代替了TreeNode的根节点,也就是说在实际的ConcurrentHashMap“数组”中,存放的是TreeBin对象,而不是TreeNode对象,这是与HashMap的区别。另外这个类还带有了读写锁。
static final class TreeBin<K,V> extends Node<K,V> { TreeNode<K,V> root; volatile TreeNode<K,V> first; volatile Thread waiter; volatile int lockState; // values for lockState static final int WRITER = 1; // set while holding write lock static final int WAITER = 2; // set when waiting for write lock static final int READER = 4; // increment value for setting read lock /** * Tie-breaking utility for ordering insertions when equal * hashCodes and non-comparable. We don't require a total * order, just a consistent insertion rule to maintain * equivalence across rebalancings. Tie-breaking further than * necessary simplifies testing a bit. */ static int tieBreakOrder(Object a, Object b) { int d; if (a == null || b == null || (d = a.getClass().getName(). compareTo(b.getClass().getName())) == 0) d = (System.identityHashCode(a) <= System.identityHashCode(b) ? -1 : 1); return d; } /** * Creates bin with initial set of nodes headed by b. */ TreeBin(TreeNode<K,V> b) { super(TREEBIN, null, null, null); this.first = b; TreeNode<K,V> r = null; for (TreeNode<K,V> x = b, next; x != null; x = next) { next = (TreeNode<K,V>)x.next; x.left = x.right = null; if (r == null) { x.parent = null; x.red = false; r = x; } else { K k = x.key; int h = x.hash; Class<?> kc = null; for (TreeNode<K,V> p = r;;) { int dir, ph; K pk = p.key; if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) dir = tieBreakOrder(k, pk); TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { x.parent = xp; if (dir <= 0) xp.left = x; else xp.right = x; r = balanceInsertion(r, x); break; } } } } this.root = r; assert checkInvariants(root); } /** * Acquires write lock for tree restructuring. */ private final void lockRoot() { if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER)) contendedLock(); // offload to separate method } /** * Releases write lock for tree restructuring. */ private final void unlockRoot() { lockState = 0; } /** * Possibly blocks awaiting root lock. */ private final void contendedLock() { Thread current = Thread.currentThread(), w; for (int s;;) { if (((s = lockState) & ~WAITER) == 0) { if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) { if (waiter == current) U.compareAndSwapObject(this, WAITERTHREAD, current, null); return; } } else if ((s & WAITER) == 0) U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER); else if ((w = waiter) == null) U.compareAndSwapObject(this, WAITERTHREAD, null, current); else if (w == current) LockSupport.park(this); } } /** * Returns matching node or null if none. Tries to search * using tree comparisons from root, but continues linear * search when lock not available. */ final Node<K,V> find(int h, Object k) { if (k != null) { for (Node<K,V> e = first; e != null; ) { int s; K ek; if (((s = lockState) & (WAITER|WRITER)) != 0) { if (e.hash == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; e = e.next; } else if (U.compareAndSwapInt(this, LOCKSTATE, s, s + READER)) { TreeNode<K,V> r, p; try { p = ((r = root) == null ? null : r.findTreeNode(h, k, null)); } finally { Thread w; if (U.getAndAddInt(this, LOCKSTATE, -READER) == (READER|WAITER) && (w = waiter) != null) LockSupport.unpark(w); } return p; } } } return null; } /** * Finds or adds a node. * @return null if added */ final TreeNode<K,V> putTreeVal(int h, K k, V v) { Class<?> kc = null; boolean searched = false; for (TreeNode<K,V> p = root;;) { int dir, ph; K pk; if (p == null) { first = root = new TreeNode<K,V>(h, k, v, null, null); break; } else if ((ph = p.hash) > h) dir = -1; else if (ph < h) dir = 1; else if ((pk = p.key) == k || (pk != null && k.equals(pk))) return p; else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { if (!searched) { TreeNode<K,V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.findTreeNode(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.findTreeNode(h, k, kc)) != null)) return q; } dir = tieBreakOrder(k, pk); } TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { TreeNode<K,V> x, f = first; first = x = new TreeNode<K,V>(h, k, v, f, xp); if (f != null) f.prev = x; if (dir <= 0) xp.left = x; else xp.right = x; if (!xp.red) x.red = true; else { lockRoot(); try { root = balanceInsertion(root, x); } finally { unlockRoot(); } } break; } } assert checkInvariants(root); return null; } /** * Removes the given node, that must be present before this * call. This is messier than typical red-black deletion code * because we cannot swap the contents of an interior node * with a leaf successor that is pinned by "next" pointers * that are accessible independently of lock. So instead we * swap the tree linkages. * * @return true if now too small, so should be untreeified */ final boolean removeTreeNode(TreeNode<K,V> p) { TreeNode<K,V> next = (TreeNode<K,V>)p.next; TreeNode<K,V> pred = p.prev; // unlink traversal pointers TreeNode<K,V> r, rl; if (pred == null) first = next; else pred.next = next; if (next != null) next.prev = pred; if (first == null) { root = null; return true; } if ((r = root) == null || r.right == null || // too small (rl = r.left) == null || rl.left == null) return true; lockRoot(); try { TreeNode<K,V> replacement; TreeNode<K,V> pl = p.left; TreeNode<K,V> pr = p.right; if (pl != null && pr != null) { TreeNode<K,V> s = pr, sl; while ((sl = s.left) != null) // find successor s = sl; boolean c = s.red; s.red = p.red; p.red = c; // swap colors TreeNode<K,V> sr = s.right; TreeNode<K,V> pp = p.parent; if (s == pr) { // p was s's direct parent p.parent = s; s.right = p; } else { TreeNode<K,V> sp = s.parent; if ((p.parent = sp) != null) { if (s == sp.left) sp.left = p; else sp.right = p; } if ((s.right = pr) != null) pr.parent = s; } p.left = null; if ((p.right = sr) != null) sr.parent = p; if ((s.left = pl) != null) pl.parent = s; if ((s.parent = pp) == null) r = s; else if (p == pp.left) pp.left = s; else pp.right = s; if (sr != null) replacement = sr; else replacement = p; } else if (pl != null) replacement = pl; else if (pr != null) replacement = pr; else replacement = p; if (replacement != p) { TreeNode<K,V> pp = replacement.parent = p.parent; if (pp == null) r = replacement; else if (p == pp.left) pp.left = replacement; else pp.right = replacement; p.left = p.right = p.parent = null; } root = (p.red) ? r : balanceDeletion(r, replacement); if (p == replacement) { // detach pointers TreeNode<K,V> pp; if ((pp = p.parent) != null) { if (p == pp.left) pp.left = null; else if (p == pp.right) pp.right = null; p.parent = null; } } } finally { unlockRoot(); } assert checkInvariants(root); return false; } /* ------------------------------------------------------------ */ // Red-black tree methods, all adapted from CLR static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> r, pp, rl; if (p != null && (r = p.right) != null) { if ((rl = p.right = r.left) != null) rl.parent = p; if ((pp = r.parent = p.parent) == null) (root = r).red = false; else if (pp.left == p) pp.left = r; else pp.right = r; r.left = p; p.parent = r; } return root; } static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, TreeNode<K,V> p) { TreeNode<K,V> l, pp, lr; if (p != null && (l = p.left) != null) { if ((lr = p.left = l.right) != null) lr.parent = p; if ((pp = l.parent = p.parent) == null) (root = l).red = false; else if (pp.right == p) pp.right = l; else pp.left = l; l.right = p; p.parent = l; } return root; } static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, TreeNode<K,V> x) { x.red = true; for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { if ((xp = x.parent) == null) { x.red = false; return x; } else if (!xp.red || (xpp = xp.parent) == null) return root; if (xp == (xppl = xpp.left)) { if ((xppr = xpp.right) != null && xppr.red) { xppr.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.right) { root = rotateLeft(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateRight(root, xpp); } } } } else { if (xppl != null && xppl.red) { xppl.red = false; xp.red = false; xpp.red = true; x = xpp; } else { if (x == xp.left) { root = rotateRight(root, x = xp); xpp = (xp = x.parent) == null ? null : xp.parent; } if (xp != null) { xp.red = false; if (xpp != null) { xpp.red = true; root = rotateLeft(root, xpp); } } } } } } static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, TreeNode<K,V> x) { for (TreeNode<K,V> xp, xpl, xpr;;) { if (x == null || x == root) return root; else if ((xp = x.parent) == null) { x.red = false; return x; } else if (x.red) { x.red = false; return root; } else if ((xpl = xp.left) == x) { if ((xpr = xp.right) != null && xpr.red) { xpr.red = false; xp.red = true; root = rotateLeft(root, xp); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr == null) x = xp; else { TreeNode<K,V> sl = xpr.left, sr = xpr.right; if ((sr == null || !sr.red) && (sl == null || !sl.red)) { xpr.red = true; x = xp; } else { if (sr == null || !sr.red) { if (sl != null) sl.red = false; xpr.red = true; root = rotateRight(root, xpr); xpr = (xp = x.parent) == null ? null : xp.right; } if (xpr != null) { xpr.red = (xp == null) ? false : xp.red; if ((sr = xpr.right) != null) sr.red = false; } if (xp != null) { xp.red = false; root = rotateLeft(root, xp); } x = root; } } } else { // symmetric if (xpl != null && xpl.red) { xpl.red = false; xp.red = true; root = rotateRight(root, xp); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl == null) x = xp; else { TreeNode<K,V> sl = xpl.left, sr = xpl.right; if ((sl == null || !sl.red) && (sr == null || !sr.red)) { xpl.red = true; x = xp; } else { if (sl == null || !sl.red) { if (sr != null) sr.red = false; xpl.red = true; root = rotateLeft(root, xpl); xpl = (xp = x.parent) == null ? null : xp.left; } if (xpl != null) { xpl.red = (xp == null) ? false : xp.red; if ((sl = xpl.left) != null) sl.red = false; } if (xp != null) { xp.red = false; root = rotateRight(root, xp); } x = root; } } } } } /** * Recursive invariant check */ static <K,V> boolean checkInvariants(TreeNode<K,V> t) { TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, tb = t.prev, tn = (TreeNode<K,V>)t.next; if (tb != null && tb.next != t) return false; if (tn != null && tn.prev != t) return false; if (tp != null && t != tp.left && t != tp.right) return false; if (tl != null && (tl.parent != t || tl.hash > t.hash)) return false; if (tr != null && (tr.parent != t || tr.hash < t.hash)) return false; if (t.red && tl != null && tl.red && tr != null && tr.red) return false; if (tl != null && !checkInvariants(tl)) return false; if (tr != null && !checkInvariants(tr)) return false; return true; } private static final sun.misc.Unsafe U; private static final long LOCKSTATE; private static final long WAITERTHREAD; static { try { U = sun.misc.Unsafe.getUnsafe(); Class<?> k = TreeBin.class; LOCKSTATE = U.objectFieldOffset (k.getDeclaredField("lockState")); WAITERTHREAD = U.objectFieldOffset (k.getDeclaredField("waiter")); } catch (Exception e) { throw new Error(e); } } }
ForwardingNode一个用于连接两个table的节点类,它包含一个nextTable指针,用于指向下一张表。而且这个节点的key value next指针全部为null,它的hash值为-1。生命周期:仅存活于扩容操作且bin不为null时,一定会出现在每个bin的首位。
static final class ForwardingNode<K,V> extends Node<K,V> { final Node<K,V>[] nextTable; ForwardingNode(Node<K,V>[] tab) { super(MOVED, null, null, null); this.nextTable = tab; } Node<K,V> find(int h, Object k) { // loop to avoid arbitrarily deep recursion on forwarding nodes outer: for (Node<K,V>[] tab = nextTable;;) { Node<K,V> e; int n; if (k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null) return null; for (;;) { int eh; K ek; if ((eh = e.hash) == h && ((ek = e.key) == k || (ek != null && k.equals(ek)))) return e; if (eh < 0) { if (e instanceof ForwardingNode) { tab = ((ForwardingNode<K,V>)e).nextTable; continue outer; } else return e.find(h, k); } if ((e = e.next) == null) return null; } } } }
三个核心方法
ConcurrentHashMap定义了三个原子操作,用于对指定位置的节点进行操作。正是这些原子操作保证了ConcurrentHashMap的线程安全。
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); } static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) { return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); } static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); }
初始化initTable
对于ConcurrentHashMap来说,调用它的构造方法仅仅是设置了一些参数而已。而整个table的初始化是在向ConcurrentHashMap中插入第一个元素的时候发生的。
private final Node<K,V>[] initTable() { Node<K,V>[] tab; int sc; while ((tab = table) == null || tab.length == 0) { if ((sc = sizeCtl) < 0) Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }
初始化方法主要应用了关键属性sizeCtl 如果这个值小于0,表示其他线程正在进行初始化,就放弃这个操作。在这也可以看出ConcurrentHashMap的初始化只能由一个线程完成。如果获得了初始化权限,就用CAS方法将sizeCtl置为-1,防止其他线程进入。初始化数组后,将sizeCtl的值改为0.75*n。
扩容
当ConcurrentHashMap容量不足的时候,需要对table进行扩容。这个方法的基本思想跟HashMap是很像的,但是由于它是支持并发扩容的,所以要复杂的多。
原因是它支持多线程进行扩容操作,而并没有加锁。我想这样做的目的不仅仅是为了满足concurrent的要求,而是希望利用并发处理去减少扩容带来的时间影响。因为在扩容的时候,总是会涉及到从一个“数组”到另一个“数组”拷贝的操作,如果这个操作能够并发进行,那真真是极好的了。
整个扩容操作分两部分:
- 构建一个nextTable,它的容量是原来的两倍,这个线程是单线程操作的。单线程的保证是通过RESIZE_STAMP_SHIFT变量经过一次运算来保证的。
- 将原来的table数组复制到nextTable中,这里允许多线程操作。
/** The next table to use; non-null only while resizing.
* 一个过渡的table表,只有在扩容时才使用
*/
private transient volatile Node<K,V>[] nextTable;
我们首先看下单个线程是如何完成的,它的大致思路就是遍历、复制的过程。首先通过运算得到需要遍历的次数i,然后利用tabAt方法获取位置i处的元素。
(1)如果这个位置为空,就在原table的i位置放入ForwardingNode节点,这个也是触发并发扩容的关键点。
(2)如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把它们分别放在nextTable的i和i+n位置。
(3)如果这个节点是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理结果分别放在nextTable的i和i+n位置。
(4)遍历完所有节点后就完成了复制工作。这时让nextTable作为新的table,并且更新sizeCtl为新容量的0.75倍,完成扩容。
再看下多线程的情况
如果线程遍历到的节点是forward节点,就向后继续遍历,再加上给节点上锁的机制,就完成了多线程的控制。多线程遍历节点,处理了一个节点,就把对应点的值set为forward,另一个线程看到forward,就向后遍历。这样交叉就完成了复制工作。而且还很好的解决了线程安全的问题。这个方法设计很值得学习,数据复制的结构图如下:
put方法
前面的所有的介绍其实都为这个方法做铺垫。ConcurrentHashMap最常用的就是put和get两个方法。
现在来介绍put方法,这个put方法依然沿用HashMap的put方法的思想,根据hash值计算这个新插入的点在table中的位置i,如果i位置是空的,直接放进去,否则进行判断,如果i位置是树节点,按照树的方式插入新的节点,否则把i插入到链表的末尾。
ConcurrentHashMap中依然沿用这个思想,有一个最重要的不同点就是ConcurrentHashMap不允许key或value为null值。另外由于涉及到多线程,put方法就要复杂一点。 在多线程中可能出现下面情况:
- 如果一个或多个线程正在对ConcurrentHashMap进行扩容,当前线程也要进入扩容的操作中。这个扩容的操作之所以能被检测到,是因为transfer方法中在空结点上插入forward节点,如果检测到需要插入的位置被forward节点占有,就帮助进行扩容;
- 如果检查到要插入的节点是非空且不说ForwardingNode节点,就对这个节点进行加锁,保证线程安全。尽管这有些影响性能,但还是比HashTable的synchronized要好很多。
整个流程首先定义不允许key或value为null的情况放入,对于每个放入的值,首先利用spread方法对key的hashCode进行一次hash计算,由此决定这个值在table中的位置。
如果这个位置的值为空,不需要加锁操作,利用 CAS 尝试写入,失败则自旋保证成功。
如果这个位置存在节点,说明发生了hash碰撞,首先判断这个节点的类型,如果是链表节点(fh>=0),则得到的节点就是hash值相同的节点组成的链表的头节点。如果遇到hash值与key值都与新加入节点是一致的情况,则只需要更新value值即可。否则依次向后遍历,直到链表尾插入这个结点。如果加入这个节点以后链表长度大于8,就把这个链表转换成红黑树。如果这个节点的类型已经是树节点的话,直接调用树节点的插入方法进行插入新的值。
get方法
get方法比较简单,给定一个key来确定value的时候,必须满足两个条件 key相同 hash值相同,对于节点可能在链表或树上的情况,需要分别去查找。